

Solid Polymer Sensor ES4-AG1-200 - All Gas

Technical Specification

Performance

Sensitivity	55 ± 15 nA / ppm
Zero current	± 100 nA
Response time	
-T ₅₀	< 10 s
-T ₉₀	< 30 s
Range	200 ppm
Repeatability	1 %
Lower Detectable Limit (LDL)	<1 ppm
Resolution (16Bit ADC)	0.1 ppm
Maximum overload	1000 ppm
Linear range	200 ppm

Environment

ge	Temperature Range	-40 to 50 °C
	Humidity Range (non condensing)	10 to 95 % R.H
	Pressure Range	800 to 1200 hPa

Operation

Operating principle	amperometric, 3-electrode
Bias voltage	0 mV
Recommended load resistor	100
Warm up time	< 90 / 60 s

Lifetime

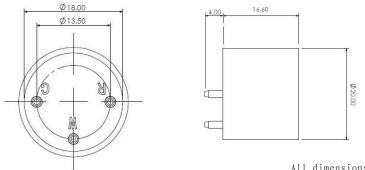
Elictimo	
Long Term Sensitivity Drift	< 1 %/month
Zero Drift in clean air	< 2 ppm
Storage conditions	0-20 °C
Storage life	6 month
Expected Life Time	> 3 years
Warranty	24 month
Housing	
Housing material	ABS
Weight	< 6 g

Part Number:

01-ES4-AG1-200-01

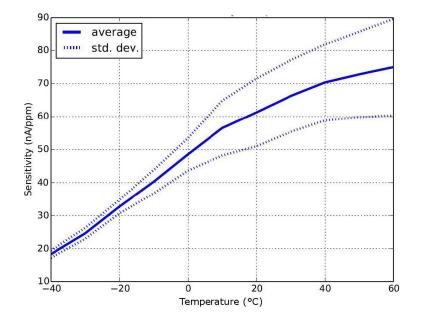
Features

to PID	High sensitivity Low cost alternative
	No electrolyte leakage
	Low cost at large
volumes	
ly calibr including report	Individual ated g test Detect to most VOC
Gases	
	Strong signal to noise
Sensor in	Smallest EC n the world Fast Response time


Typical applications

Consumer Market General Gas Detection VOC Gas Detection Low Power Nose Mobile Phone Nose Indoor Air Quality Outdoor Air Quality Breath Alcohol

Detector



Dimensions

All dimensions in mm

Temperature curve

Cross sensitivity

Gas	Formula	Test concentration (ppm)	Sensor reading (ppm)
Ammonia	NH ₃	50	0
Carbon Dioxide	CO ₂	1000	0
Carbon Monoxide	СО	100	100
Chlorine	Cl ₂	1.0	0
Dichlor methane	CH_2CI_2	30	0
Ethanol	$C_2H_5CI_2$	104	100
Ethylene oxide	C_2H_5OH	14	<2
Ethylene	C_2H_4		Yes
Hydrogen	H ₂	100	20
Hydrogen Sulphide	H ₂ S	10	400
Hydrogen Cyanide	HCN	10	9
Isopropanol	C ₃ H ₇ OH		yes
Methan	CH_4	30000	0
Methanal	НСНО		Yes
Methanol	CH₃OH		Yes
Methylpropene	C_4H_8	15	18
Nitric Oxide	NO	25	n.e.
Nitrogen Dioxide	NO ₂	10	-5
Ozone	O ₃	0.5	0
Sulphur Dioxide	SO ₂		yes
Toluene	C ₇ H ₈		No
Xylene	C_5H_{10}		No
Gasoline			yes
Acetylene	C_2H_2		yes
Methyl Mercaptan	CH₄S		yes
Phosphine	PH ₃		yes
Tetrahydrothiophene	THT	10	<1
Vinyl Chloride	C2H3CI		yes
Formaldehyde	НСНО		yes
Ozone	O ₃		yes
Hydrazine	N2H4		yes
Arsine	AsH ₃		yes

Fluorine	F ₂	yes
Chlorine Dioxide	CIO ₂	No
Bromine	Br ₂	No
Hydrogen Chloride	HCI	No
Hydrogen Bromide	HBr ₂	No
Acrylonitrile	CH2CHCN	No
Acetone	СНЗСОСНЗ	No

Above sensor reading in ppm after calibration to CO.

 $\ensuremath{\mathsf{Cross}}$ sensitivities indicated withyes showed a signal response under a bump test.

We will continue to do more cross gas testing.

DISCLAIMER:Sensor performance is temperature dependent. Performance data stated is based on test conditions with new sensors at 23°C, 50%/H and 1 atm, flow rate>150qcm/min using EC-Sense recommended circuitry. Cross sensitivity gases are not target gases. Relations and performance can change, also with ageing of the sensor. In the interest of continued product improvement, EC-Sense reserves the right to change design features and specifications without prior notification. We do not accept any legal responsibility for customer applications of our sensors. EC-Sense accepts no liability for any consequential losses, injury or damage resulting from the use of this document, the information contained within or from any omissions or errors herein. This document does not constitute an offer for sale and the data contained is for guidance only and may not be taken as warranty. Any use of the given data must be assessed and determined by the user thereof to be in accordance with federal, state and local laws and regulations. All specifications outlined are subject to change without notice.

WARNING:EC-Sense sensors are designed to operate in a wide range of harsh conditions. It is nevertheless essential to prevent exposure to high concentrations of solvent vapours during storage, assembly and operation. When using sensors on printed circuit boards (PCB's), degreasing agents should be used prior to the sensor being fitted. Please note that gluing or soldering direct to the pins of EC-Sense gas sensors will void any warranty. Please use PCB sockets when connecting EC-Sense sensors. Any electrochemical EC-Sense gas sensor can potentially fail to meet specification without warning. Despite the high reliability of our products, we recommend checking all sensors and instruments for response to gas before use, especially where life safety is a performance requirement of the product. At the end of the product's life, do not dispose of any electronic sensor, component or instrument in the domestic waste but contact EC-Sense or their distributor for disposal instructions. Customers should test under their own conditions to ensure that the sensors are suitable for their specific requirements.